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An account is given of recent theoretical results for steady inviscid transonic flows around a
variety of three-dimensional bodies of aerodynamic interest. The local linearization method
for axisymmetric flow is combined with the transonic equivalence rule to calculate pressure
distributions for freestream Mach number one on the surface and in the near flowfield of a
number of slender, pointed, axisymmetric and nonaxisymmetric bodies, including simple
wing-body combinations, for both nonlifting and lifting conditions. Comparisons with ex-
periment exhibit good agreement, except near the rear of some of the bodies, particularly
those with maximum thickness far forward or on lifting bodies at larger angles of attack. It
is suggested that the former is due primarily to wind-tunnel wall interference, and the latter
to boundary-layer separation and vortex generation.

I. Introduction

THE purpose of this paper is to describe a theoretical pro-
cedure for determining the pressure distributions at free-

stream Mach number Mm equal unity on the surface and in
the near flowfield of slender bodies and wing-body combina-
tions, both nonlifting and lifting, and to demonstrate the
quality of the results by comparison with experiment. The
analysis is based on the small disturbance theory of inviscid
transonic flow, and makes use of the approximations of
slender-body theory, the transonic equivalence rule, and the
method of local linearization for axisymmetric flow with Mm
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= 1. Results are presented for bodies of revolution having
maximum diameter located between 30% and 70% of the
body length, for parabolic-arc bodies of elliptic cross section,
and for both a conical and a more general wing-body com-
bination. Angles of attack a range from 0° to 6°. The ex-
amples were selected, insofar as possible, to enable comparison
with existing data obtained either in a conventional transonic
wind tunnel with partly open walls or in a solid-wall wind
tunnel operating in the choked condition to simulate flow
with Moo = 1.

II. Theory

Basic Equations

The analysis is expressed primarily in terms of a body-fixed
Cartesian coordinate system centered at the nose with the x
axis directed rearward and aligned with the longitudinal axis
of the body, the y axis directed to the right, facing forward,
and the z axis directed vertically upward, as illustrated in
Fig. 1. The freestream direction may be inclined any small
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angle to the x axis, although attention is confined to cases in
which it is in the x-z plane, i.e., no sideslip. Because of the
fundamental assumption of inviscid small disturbance theory
that the flow is irrotational, the velocity v can be expressed as
the gradient of a potential <£, which may, in turn, be related
to a perturbation velocity potential $ according to1

= Um(x + az) (1)
where Um represents the freestream velocity. The partial
differential equation for 0 has been approximated by a variety
of forms in transonic flow studies; but we use the following
form for the reasons put forward in Ref. 2 and confirmed in
subsequent studies.

- M „ (2)
This equation applies whether the coordinate system is
aligned with the x axis parallel to the direction of the free-
stream, as in most derivations,2'3 or inclined a small angle to
it as in the present applications to lifting configurations.1
The expression for the pressure coefficient Cp is not invariant
with respect to small rotations of the coordinate system, how-
ever, and is as follows in the aforementioned coordinate
system1

P ~ I
Um

(fa* + (3)

The boundary conditions require that v = iUm + kaUm
infinitely far from the body, where i, j, and fc are unit vectors
parallel to the x, y, and z axes, and that the velocity com-
ponent vn normal to the body surface be zero at the body.
The boundary conditions for 4> for slender bodies or thin wings
having small n\ are then1

= 0, [Um(ni + cm3)
CW3) + 0n]body = 0 (4)

where n = in\ + jnz + kn^ is the unit normal to the surface,
and HI, n2, and w3 are the direction cosines of n with respect
to the x, y, and z axes. Since attention will be confined to
flows with Mm — 1 having all shock waves downstream of the
region for which results will be calculated, we will not require
the corresponding relation for conditions on the two sides of
a shock wave. The preceding equations provide therefore
the fundamental relations for the analysis to follow.

Transonic Equivalence Rule

The transonic equivalence rule first announced by Oswa-
titsch4-5 for flow past thin nonlifting wings, and later extended
to lifting wings6 and slender bodies of arbitrary cross section,1
provides a means for greatly simplifying the analysis of flow
with Moo = 1 past a wide class of slender bodies, including
wing-body combinations, for both nonlifting and lifting situ-
ations, by relating the flow around the slender body of arbi-
trary cross section to that past an "equivalent" nonlifting
body of revolution having the same longitudinal distribution
of cross section area S(x) . This rule is closely associated with
the transonic area rule of Whitcomb7 relating to drag, but per-
tains in addition to the properties of the flowfield, such as the
velocity and pressure, that are derivable from a knowledge of
the potential. It is also closely related to one of the simplest
results of slender-body theory of subsonic and supersonic, as
well as transonic, flow, which states that $ in the vicinity of a
slender body of arbitrary cross section is approximately

cf> = <£2 + g(x) (5)
where $2 is the solution of the two-dimensional Laplace's
equation

<t>yv + «« = 0 (6)
for the given boundary conditions in the y-z plane at each x

u»f^L-y ̂
-\^C^1

f EQUIVALENT BODY
O^ WITH SAME S(X)
V AS WING-BODY

<£2 + g(x) FOR SMALL r

Fig. 1 Illustration of transonic equivalence rule.

station, and g(x) is an additional contribution dependent upon
Mm and S(x), but not on the shape of the cross section. It is
thus possible to determine g(x) from the solution of the
simpler problem of axisymmetric flow at the same Mm past
the equivalent body. Aside from the significant reductions
of the transonic drag rise achieved by application of Whit-
comb's area rule, the opportunities for advance provided by
the transonic equivalence rule have never been fully ex-
ploited.

It is advantageous to express the equivalence rule as

in which each component of <t> has the meaning indicated in
Fig. 1. Equation (7) may be derived from Eq. (5) by writing
<t> — 02 + g(x) for the body of arbitrary cross section and
subtracting the corresponding expression for the equivalent
body. The order of error in Eq. (7) has been established1 for
thin wings of aspect ratio A, chord c, and thickness ratio r.
It was found that the magnitude of the quantity <t>/Umc re-
tained in the equivalence rule is 0(Ar InA), whereas that of
the quantities discarded in the derivation for Mm = 1 is
0(A4r2 InA). Since the magnitude of the quantities dis-
carded in the derivation of the corresponding result in linear-
ized subsonic and supersonic flow past slender bodies is 0(A3r
InA), it follows that the equivalence rule ought to be applica-
ble to wings of greater aspect ratio at Mm = 1 than at any
other Mach number.

Once 4> is determined, the pressure distribution on or near
a slender body is provided by Eq. (3). The results may be
integrated to obtain the total forces, including lift and drag,
and moments on slender bodies or wing-body combinations of
arbitrary cross section. Since the aerodynamic loading, lift,
and all lateral forces and moments may be expressed in terms
of differences in pressure between pairs of points at the same
longitudinal station, these quantities depend solely on <£2 and
are independent of Mm. In particular, we note, as discussed
long ago,8-9 that these quantities may be calculated using a
linearized slender-body theory even though Mm = 1.

Local Linearization Method for Axisymmetric
Flow with Mm = I

Approximate solutions of good accuracy for axisymmetric
flow with Moo = 1 past a wide class of slender pointed bodies
may be obtained by application of the method of local
linearization.10 This method was first developed for two-
dimensional flow past thin airfoils,11 and subsequently ex-
tended to three-dimensional flow past thin wings of finite
span12 (see Refs. 13 and 14 for comprehensive summaries).
Without repeating details of the derivation, this method pro-
vides the following nonlinear ordinary differential equation
for u = <t>x at Mm = I on that part of the surface of a slender
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(x/Z)R = 0.3Rmax

cp c

PARABOLIC-ARC BODY
D = 6", D/J= 1/12

Fig. 2 Pressure distributions at Mm = 1 on five nonlifting bodies of revolution, and a plot of the theoretical characteristics
network of the parabolic-arc body illustrating effects of the wind-tunnel walls. Open symbols represent data for 6-in.
diam models in a 14-ft transonic wind tunnel,16 closed symbols for data on same models in a choked 12-ft solid-wall wind

tunnel.15

body of revolution along which bu/dx > 0:

u S"(x)
4?r

(7

ln hr[\_dx
f l)S(z)e<

- ^(^"froi
47rS(oO ]

X

J_ C"+ 4^ Jo
x S"(X) - (8)

where S = TnR2 represents the cross section area, primes indi-
cate differentiation with respect to x or £ as indicated, C
represents Euler's constant ^ 0.5772, and

(d/dx)(u/Um) - S'(x)S"(x)/±irS(x) = (9)

Equation (8) is useful for flows that are accelerating from sub-
sonic to supersonic speeds, but must be supplemented by
additional expressions that are valid for decelerating flows as
well. Such equations were also derived in Ref. 10, and are
as follows for Mm = 1 :

A (JL\ =
 S'"

dx \C^/ ~~ ~~4747T

1
dx

+

S(x)

./.'
-as) ' .

S"(a?) -
x- {

for a region of locally subsonic flow (i.e., w < 0), and
d

(10)

dx \U(

dx
*"(*) , S(s) 1 p

2?r */o

for a region of locally supersonic flow (i.e., u > 0). Although
Eqs. (10) and (11) are both for flows with Mm = 1, neither is
useful for the transition from subsonic to supersonic flow be-
cause of the presence of the ln(—u) term in Eq. (10) and the
hm term in Eq. (11).

Application of the preceding equations requires the evalu-
ation of a constant of integration. If the location of the sonic
point is known, as for a cone-cylinder for which it is at the
shoulder, the constant for Eq. (8) can be evaluated simply by
requiring that u = 0 at that point. For a smoothly curved
body, however, the location of the sonic point would ordi-

narily not be known in advance, nor would a value for u be
known at any other point, except at the nose where the
logarithmically infinite value for u indicated by slender-body
theory renders the knowledge provided by stagnation condi-
tions useless for the present purposes. A simple procedure
that has been found to lead to satisfactory results in applica-
tions of Eq. (8) is to select the one and only integral curve that
is analytic (all derivatives finite) at the point where S"(x)
vanishes. As shown in Ref. 10, this procedure suffices to de-
termine a unique solution that is in good agreement with ex-
perimental data. Theoretically, it assures that the solution
for u can be expanded in a Taylor's series in the neighborhood
of the point where S"(x) = 0, and this in turn provides the
starting values necessary to continue the calculation by ap-
plication of standard numerical techniques. Further away
from the sonic point, u may reach a maximum or minimum,
and Eq. (8) would no longer be capable of providing a good
representation of the flow. The solution for such regions may
be determined by use of Eq. (10) if the flow is subsonic or
Eq. (11) if the flow is supersonic, with the integration constant
and point of connection with the solution of Eq. (8) selected
so that both u and du/dx are continuous at that point. For
further details, reference should be made to Ref. 10 and also
to Ref. 11, where some analogous situations for two-dimen-
sional flow past thin airfoils are discussed.

III. Results

Pressure Distributions on the Surface and in the Near
Flowfield of Several Nonlifting Bodies

In the original presentation of the method of local linear-
ization for axisymmetric flow,10 the theory was applied to flow
with Mco = 1 past slender cone-cylinders and parabolic-arc
bodies of revolution, and the results were compared with data
for several such bodies having various values for the diameter-
length ratio D/L In Ref. 15, similar results were given for
two additional bodies of revolution having D/l = yV, but
with the locations of maximum diameter at 30% and 70% of
the body length. The latter were part of a series of bodies of
revolution tested in the Ames 14-ft transonic wind tunnel.16

The ordinates of these bodies having maximum diameter at
50%, 60%, and 70% of the body length are given by
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Fig. 3 Experimental16 and theoretical pressure distributions at Mm = 1 in the flowfields of three of the bodies of revolution
shown in Fig. 2.

with n = 2.00, 3.38, and 6.03, while the same values for n
applied to

R/l = A[(l - x/l) - (I - x/l)-} (13)
provide the ordinates for those bodies with maximum diame-
ter at 50%, 40%, and 30% of the length. In both Eqs. (12)
and (13), A is related to D/l and n by

A = [n»'<»-»/2(n - l)](D/l) (14)

Figure 2 shows the experimental surface pressure distribu-
tions15'16 for the five different bodies with D/l = ^ ^°~
gether with the theoretical results calculated using the local
linearization method. The theoretical results for the bodies
with maximum diameter at 30%, 50%, and 70% of the body
length have been given previously10'15; those for the bodies
with maximum diameter at 40% and 60% of the body length
are new and serve to complete the comparisons for the entire
series of bodies tested. Also included on the plots for the
bodies with maximum diameter at 30%, 50%, and 70% of the
body lengths are a second set of experimental results15 ob-
tained when the models used in the original tests in the 14-ft
transonic wind tunnel were tested in the Ames 12-ft pressure
wind tunnel with solid walls under choked conditions to simu-
late flow with Mm = 1, as indicated to be appropriate by
transonic flow theory. It may be seen that the pressure dis-
tributions calculated using the local linearization method are
in essential agreement with the measurements in both wind
tunnels .over the fgrebodies, but that substantial discrepancies
appear among the results for the afterbodies, particularly for
the bodies with maximum thickness forward of the midpoint.
As noted originally,15 the data from the choked wind tunnel
are generally on the opposite side of the theoretical curve from
the data from the transonic wind tunnel.

With respect to the discrepancies on the afterbodies, many
would dismiss further discussion by attributing the differences
to shock-wave/boundary-layer interaction effects not in-
cluded in the theory. While there is little doubt that such
effects are important, the characteristic diagram in the lower
right-hand part of Fig. 2 suggests that the discrepancies are
due, at least in part, to wind-tunnel-wall interference. This
diagram shows the characteristic lines for an unbounded flow
with Mco = 1 past a parabolic-arc body of revolution with
D/l = y1 -̂. They have been calculated by applying the
transonic similarity rule for axisymmetric flow17 to a related
diagram18 calculated for a parabolic-arc body of revolution
with D/l = -J. The position of the wall with respect to a
6-in. diam model in the 12-ft pressure wind tunnel is as indi-

cated, and the nearest part of the wall in the tests in the 14-ft
transonic wind tunnel is -J as far away. Although it was
thought at the time the tests in the 14-ft transonic wind tun-
nel were conducted that the 6 in. diam of the models was
sufficiently small to avoid significant effects of wind-tunnel-
wall interference, this diagram shows that such may not be
the case because Mach waves originating from the forepart
of the body are indicated to be reflected from the walls onto
the aft part of the body. It can be seen, furthermore, that
the most upstream reflected Mach wave strikes the body at
about x/l = 0.6 in the 12-ft wind tunnel, and slightly aft of
that location in the 14-ft wind tunnel. The effect of the re-
flected waves striking the body is to make the pressure coeffi-
cients more negative in the 12-ft wind tunnel, because the out-
going characteristics represent expansion waves that reflect
from the solid wall of the tunnel as rarefaction waves. The
effects are amplified, moreover, because of the focusing char-
acteristics of the reflected axisymmetric waves as they col-
lapse down onto a part of the body that has a smaller circum-
ference than that from which they originated. The sign of
the corresponding effects in the 14-ft transonic wind tunnel is
not so simple to ascertain, but it appears that the reflections
from the partly open wall of that wind tunnel are very nearly
equal in magnitude, but opposite in sign, to the reflections
from the solid wall of the 12-ft wind tunnel. In addition to
the direct effects of the reflected waves impinging on the rear
of the body, there exists the distinct possibility of significant
augmentation arising from the interaction of the boundary
layer with a shock wave that may form adjacent to the body.
The latter may form either because of coalescence of compres-
sion waves reflecting from the body or because of boundary-
layer separation resulting from the wall-induced steepening
of the adverse pressure gradients. In either case, it is clear
that considerable additional study will have to be made before
it is possible to properly evaluate the significance of discrepan-
cies between theoretical and experimental pressure distribu-
tions on the aft parts of slender bodies.

Once Cp has been determined for the body surface, it is a
simple matter to calculate the pressure distribution through-
out the near flowfield by using the expression

(Cp)r = - S"(x)
7T

relating the pressure coefficient (Cp)r at an arbitrary, but
small, distance r from the body axis to that (Cp)jz at the body
surface r = R(x) at the same x location. This relation may
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CD 0

Fig. 4 Experimental19 and theoretical pressure distribu-
tions at JVfa, = 1 along two lines on three nonlifting bodies

having different elliptic cross sections.

be derived from Eqs. (3) and (5) with fa given by

fa = (Um/2w)(dS/dx) Inr (16)

Figure 3 shows flowfield data from the Ames 14-ft transonic
wind tunnel for several r/D for three of the bodies of Fig. 2
compared with the results calculated using Eq. (15) and the
theoretical surface pressure distributions of Fig. 2 provided
by the local linearization method. Except near the rear of the
bodies where effects associated with the aforementioned discre-
pancies for the surface pressures are in evidence, the theoretical
and experimental results are in satisfactory agreement for r/D
as large as 4 for the 50% and 70% bodies, and at least 2 for the
30% body. Deterioration sets in with increasing r/D for any
body because of the growing violation of the small r approxi-
mation of the theory, and is greatest for the 30% body be-
cause of the greater strain imposed on the slender-body ap-
proximations by the blunter nose of this body. Altogether,
the comparisons indicate a wide region of applicability of the
theory, particularly when considered with respect to possible
applications of the transonic equivalence rule to configura-
tions having wings or related extremities of such size that
they, rather than the body, provide the major contribution to
Cp at lateral distances of the order of those for which results
are shown in Fig. 3.

As a first application of the transonic equivalence rule com-
bined with the local linearization results for the surface pres-
sure distribution on the equivalent body of revolution, we
consider a family of bodies with elliptic cross sections tested
in the Ames 14-ft transonic wind tunnel.19 Figure 4 presents
the pressure distributions measured along .the extremities of
the major and minor axes (0 = 0° and 90°) at Mm = 1 for
three bodies having values of 1.5, 2.0, and 3.0 for the ratio
X = a/b of major to minor axes of the elliptic cross section,
and having the same longitudinal distribution of cross section
area S = irab as the parabolic-arc body with D/l = 1/12 for
which results are shown in Figs. 2 and 3. Also included are
the corresponding pressure distributions calculated using the
equivalence rule with fajt given by20

fa,, = R.P. ['
27T

In o- + (a2 + a2 + &2)1/2"|
2 J

in which R.P. indicates the real part, a = y + iz == rei6,
fa.B is given by the expression for fa in Eq. (16), and Cp is re-
lated to <t> by Eq. (3) with a = 0. Although the method of
local linearization does not provide values for <j>B directly,
only a knowledge of g'(x) = dg(x)/dx is required for the cal-
culation of the pressure, and it may be determined from the
surface pressure coefficient (Cp)s on the equivalent nonlifting
body of revolution by application of the following relation
derived from Eqs. (3, 5, 7, and 16) (Ref. 1) :

w] ln(S/ir)g'(x) = -(

S'*(aO/4mS} (18)
As in the previous comparisons, the theoretical and experi-
mental results are in good agreement except near the rear of
the bodies, where at least part of the discrepancies must be
attributed to the extraneous effects of the wind-tunnel walls.
Perhaps the most striking feature of the results shown on Fig.
4 is the smallness of the effects of the ellipticity of the cross
section.

The corresponding results for the flowfield are shown in
Fig. 5 for the body having X = 3. As may be anticipated
from the results of Fig. 4 for the surface pressures, the values
for Cp Sit a given x are virtually independent of the azimuthal
angle 6, and are, furthermore, very nearly identical to those
shown in Fig. 3 at the same r/D for the equivalent body of
revolution, namely, that with maximum diameter at 50% of
the length. For these- reasons, and in the interest of brevity,
the flowfield results for the other two bodies of this series hav-
ing smaller X have been omitted.

Pressure Distributions on Lifting Bodies

As the first application to a lifting body, consider flow with
Moo = 1 past the parabolic-arc body of revolution with D/l
= ^2 for which the results for zero angle of attack are
shown in Fig. 2. Experimental results for this body obtained
in the Ames 14-ft transonic wind tunnel19 at angles of attack
a = 2° , 4° , and 6° are shown in Figure 6 for three lines along
the surface of the body, namely 6 = 0° and ±90°. Also
included on those plots are pressure distributions calculated

r/D= 3

(17)
Fig. 5 Experimental19 and theoretical pressure distribu-
tions at Moo = 1 in the flowfield of a nonlifting body having

elliptic cross section.
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using the transonic equivalence rule with <£2,« given by

<K« = UmaS sin(9/7rr (19)

fas given by Eq. (16), g'(x) by Eq. (18), and Cp by Eq. (3);
all evaluated for the body having ordinates R(x) given by Eq.
(12) with n = 2. It may be seen that the agreement is good
along most of the length of the body, and that significant
discrepancies occur over the rear part of the body, much as in
the case of the nonlifting bodies. The similarity of the com-
parisons, particularly at the smaller angles of attack, to those
for a = 0° shown in Fig. 2 lend support to the idea that wind-
tunnel wall interference effects are significantly affecting the
results along the rear of the body. The variation with 6 of
the differences between the theoretical and experimental pres-
sures that becomes increasingly evident as a is increased to 6°
suggests that additional effects having a nonaxisymmetric
character are present along the aft portion of the body. Al-
though we can cite no definitive supporting evidence from
these tests, we are inclined to conjecture that the experimental
results are beginning to be influenced by vortex separation
caused by the crossflow velocity component, as is familiar at
both subsonic and supersonic speeds.

Similar comparisons of theoretical and experimental results
for lifting bodies of elliptic cross section in flow with Mm = 1
are shown in Figs. 7 and 8 for a pair of bodies having values
of 2 and 3 for the ratio a/b of major to minor axes. Both
bodies have the same longitudinal distribution of cross section
as the parabolic-arc body of D/l = T^ for which results are
shown in Figs. 2 and 6. The experimental results were ob-
tained in tests in the Ames 14-ft transonic wind tunnel,19 and
are thus directly comparable to those presented in Figs. 2 and
6 for the parabolic-arc body of revolution tested in that wind
tunnel. The theoretical results are calculated by using the
transonic equivalence rule with fa>a given by the following-
expression for two-dimensional potential flow about a body of
elliptic cross section moving through still air with velocity
Vma (Ref. 20)

= R.P. - a2 + 62)1/2 +

a2 + &2

(20)
a + (cr2 - a2 + fc2)1/2.

9 f ( given by Eq. (17), Cp by Eq. (3), and g'(x) by Eq. (18)

Cp 0

Fig. 6 Experimental19 and theoretical pressure distribu-
tions at Moo = 1 along three lines on a lifting parabolic-arc

body of revolution at three angles of attack.

Fig. 7 Experimental19 and theoretical pressure distribu-
tions at MOO — 1 along three lines on a lifting body having
elliptic cross section with a/b = 2 at three angles of attack.

with values for (CP)B provided by the method of local linear-
ization. The comparisons show that the trends already de-
scribed for the body of revolution are repeated; good agree-
ment occurs along most of the length of each body, and not-
able deterioration sets in along the rear part. The observa-
tion that the discrepancies are most pronounced for the body
with a/b = 3 and at 6° provides support for the suggestion
that the experimental results for the rear of the lifting bodies
are influenced by vortex separation at the larger angles of
attack.

Pressure Distribution on Thin Wings and
Slender Wing-Body Combinations

As we turn our attention toward wing-body combinations,
it is instructive to recall the example of the thin cone-cylinder,
or equivalently a cone of finite length, considered theoretically
in Ref. 1, experimentally in Ref. 21, and summarized in Ref.
13. In general, the ordinates of the upper surface of the cone

cp o

Fig. 8 Experimental19 and theoretical pressure distribu-
tions at MO, — 1 along three lines on a lifting body having
elliptic cross section with a/b = 3 at three angles of attack.
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Fig. 9 Pressure distributions at Mm = 1 on a thin elliptic
cone-cylinder and on the equivalent body of revolution.13

are given by
Zu(x,y) = (21)

where m is the tangent of the semiapex angle of the planform,
I is the length of the cone, and t is the maximum thickness of
the cone. The elliptic section in the plane x = x\ thus has
major and minor semiaxes a = mx\ and b = txi/2l, and cross
section area S(x\) = irab = -Ktmx^/ll. Although the theory
was developed generally, the pressure distribution has been
measured for only one example, namely that defined by m =
-J- and t/l = 0.06. If we consider the cone to be a triangular
wing, such values correspond to an aspect ratio of 2 and a
thickness ratio of 0.06. The equivalent body of revolution is
a slender cone with semiapex angle co = (mt/2l)~*12, which in
this instance is equal to 0.1225 rad or 7°. Equations (17) and
(20) could be used for <£2) i and <£2)Q:, but it is much simpler for
the calculation of the surface pressure distribution to adopt
the usual practice of thin-wing theory and evaluate these
quantities on the wing surface approximated to be at z = 0
and for — mx < y < mx. With the additional neglect of b2

compared with a2, 02,< and <£2,a may be approximated by
02,« = (Umtmx/2l) ln(mz/2), 02,a = ±Uma(mW - ?/2)1/2

(22)

where the upper sign is to be used on the upper surface and
the lower sign on the lower surface of the wing. With the
introduction of the further approximation customary in wing-
theory that the pressure coefficient is given by

(Cp)w = -

it was shown in Ref. 1 that

<YM iTM mt
(^P)W = (^P)B — 7:7

niT
n^r 1 =F (mV - y2)1'2

(23)

(24)

where the convention concerning upper and lower signs still
holds, and (Cp)s represents the pressure distribution on the
surface of the equivalent body, a circular cone-cylinder, at
zero angle of attack. If the method of local linearization is
used to determine the latter, we have that10-13

(C,)B = -2co* In y + co* I n j . 16
 cj XI I (T + l)coec I

f^+lXi^)-"* (25a)

for 0 < x/l < £, and

(CP)B = -2co2lny +

for-J < x/l < 1.

In

(25b)

Figure 9 shows sketches of the wing of m = |-, T = 0.06, the
equivalent body of revolution, the pressure distributions on
each at zero angle of attack, and the aerodynamic loading or
difference in pressure

Ap/#co = (CP)w,i - (Cp)w,u
on the two sides of the wing, where subscripts I and u denote
the lower and upper sides of the wing. For these parameters

(Cp)w - (CP)B = -0.0364
for zero angle of attack, and

Ap _ 4iam2x _ 2a.
(mV - 7/2)1 (1 -

(26)

(27)

where s = mx is the semispan at a distance x from the apex.
These results are shown in the two plots of Fig. 9 to be in satis-
factory agreement with the experimental data of Ref. 21.

From the preceding analysis and applications, it is but a
short step to the simple wing-body combinations of Figs. 10
and 11. In both examples, a flat plate triangular wing of zero
thickness is combined with a slender body of revolution. In
Fig. 10, the body is a slender cone with its apex at the nose of
the wing. In Fig. 11, it is a truncated parabolic-arc body of
revolution attached to the wing in such a way that the wing
root extends from 25 to 75% of the complete body length. In
order to relate the results most directly to those discussed
above, the aspect ratio of the wing is taken to be 2, the semi-
apex angle of the conical body to be 7°, and the diameter-
length ratio D/l of the complete parabolic-arc body to be ̂ .
At zero angle of attack, the wing does not affect the flow, and
the pressure distribution is the same as on the surface, or at
the corresponding point in the flowfield, of the isolated body
as illustrated in the left parts of these figures. The pressure
distribution at zero angle on the body of the conical wing-body
combination is thus given by Eq. (25), and that on the wing
at a distance r from the axis and x from the apex, as measured
along the axis, is given by Eq. (15) with S(x) = irR* =
TrcoV. No comparable analytic expressions can be cited for
the pressure distribution on the second wing-body combina-
tion at zero angle of attack, illustrated in the left part of Fig.
11, but the results are the same as indicated in Figs. 2 and 3
for the corresponding points on the body surface and in the
surrounding flow.

The aerodynamic loadings shown in the right parts of Figs.
10 and 11 have been computed using Eq. (3) for Cp, Eq. (7)
for 0, Eq. (16) for $2, t, and the following expression from Refs.
8 and 22 for <fe>a:

IV M - ^ J

n*
1 + ~

+ 4a4 cos220 + s4

r2 cos20

M + ̂  j -

"11/2)1/2
- Umaz (28)

in which the sign is positive for the upper half-plane 0 < 6 <
TT and negative for the lower half-plane TT < 6 < 2?r, and
where a = a(x) and s = s(x) represent the local radius of the

Fig. 10 Theoretical pressure distributions for
a conical wing-body combination.

= 1 on
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Fig. 11 Theoretical pressure distributions for M^ = 1 on
a wing-body combination having a flat-plate triangular

wing and a parabolic-arc body of revolution.

body and the semispan of the wing. For the specific examples
just described

a = coz - 0.1225z; s = mx = x/2 (29)

for the conical wing-body combination; and

a = 2D(x/l - a;2/*2) = W/l - */Z2) (30a)

5 = (1/2) (x/I - i + 3D/4/) = (1/2) (x/I - T\) (30b)

for the wing-body combination with the parabolic-arc body.
Upon carrying out the indicated operations, the following ex-
pressions are found for the aerodynamic loading:

^ ,— ( 1 — — ) + — -^(-: —dx\ s4/ s dx \s2
A «2
l l — —\ y*

11/2

(31a)

on the wing, and

( tof*/! .^
Ap \

[(1 + a2/s2)2 - 47/Ys2]1/2

(31b)

on the body. Although we are unaware of any experimental
data with which these or related results may be compared, the
generally good agreement displayed in the preceding com-
parisons of pressure distributions on the bodies and wings
separately suggests that correspondingly good agreement is
to be anticipated for the wing-body combinations.

IV. Conclusion

In conclusion, we emphasize that the procedures by which
these solutions have been obtained are not restricted to the
particular examples selected for display in this paper, but
possess much greater generality. Furthermore, the quality
of the agreement with experimental results is sufficiently
good, particularly when consideration is given to the numer-
ous shortcomings inherent in transonic wind-tunnel testing,
that we may go forward to more complicated configurations
with confidence that the analysis is not only possible to carry
out, but that the results will be of sufficient accuracy to be
useful to aerodynamicists.
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